Amenability, Free Subgroups, and Haar Null Sets in Non-locally Compact Groups
نویسنده
چکیده
The paper has two objectives. On the one hand, we study left Haar null sets—a measure theoretic notion of smallness on Polish, not necessarily locally compact, groups. On the other hand, we introduce and investigate two classes of Polish groups which are closely related to this notion and to amenability. We show that left Haar null sets form a σ-ideal and have the Steinhaus property on Polish groups which are “amenable at the identity” and they lose these two properties in the presence of appropriately embedded free subgroups. As an application we prove an automatic continuity result for universally measurable homomorphisms from inverse limits of sequences of amenable, locally compact, second countable groups to second countable groups.
منابع مشابه
F U N D a M E N T a Mathematicae on Haar Null Sets
We prove that in Polish, abelian, non-locally-compact groups the family of Haar null sets of Christensen does not fulfil the countable chain condition, that is, there exists an uncountable family of pairwise disjoint universally measurable sets which are not Haar null. (Dougherty, answering an old question of Christensen, showed earlier that this was the case for some Polish, abelian, non-local...
متن کاملSize of Subsets of Groups and Haar Null Sets
This is a study of several notions of size of subsets of groups. The first part (Sections 3–5) concerns a purely algebraic setting with the underlying group discrete. The various notions of size considered there are similar to each other in that each of them assesses the size of a set using a family of measures and translations of the set; they differ in the type of measures used and the type o...
متن کاملNotes on Haar Null Sets
This informal set of notes contains some of the new results which will appear in the author’s 2013 dissertation. We show that every infinite product of locally compact non-compact groups decomposes into the disjoint union of a Haar null set and a meager set, which gives a partial positive answer to a question of Darji. We also show that the compact sets in each such product group are always Haa...
متن کاملThe study of relation between existence of admissible vectors and amenability and compactness of a locally compact group
The existence of admissible vectors for a locally compact group is closely related to the group's profile. In the compact groups, according to Peter-weyl theorem, every irreducible representation has admissible vector. In this paper, the conditions under which the inverse of this case is being investigated has been investigated. Conditions such as views that are admissible and stable will get c...
متن کاملTOPOLOGICALLY STATIONARY LOCALLY COMPACT SEMIGROUP AND AMENABILITY
In this paper, we investigate the concept of topological stationary for locally compact semigroups. In [4], T. Mitchell proved that a semigroup S is right stationary if and only if m(S) has a left Invariant mean. In this case, the set of values ?(f) where ? runs over all left invariant means on m(S) coincides with the set of constants in the weak* closed convex hull of right translates of f. Th...
متن کامل